Template-Directed Synthesis of Porous and Protective Core-Shell Bionanoparticles.

نویسندگان

  • Shaobo Li
  • Madushani Dharmarwardana
  • Raymond P Welch
  • Yixin Ren
  • Christina M Thompson
  • Ronald A Smaldone
  • Jeremiah J Gassensmith
چکیده

Metal-organic frameworks (MOFs) are promising high surface area coordination polymers with tunable pore structures and functionality; however, a lack of good size and morphological control over the as-prepared MOFs has persisted as an issue in their application. Herein, we show how a robust protein template, tobacco mosaic virus (TMV), can be used to regulate the size and shape of as-fabricated MOF materials. We were able to obtain discrete rod-shaped TMV@MOF core-shell hybrids with good uniformity, and their diameters could be tuned by adjusting the synthetic conditions, which can also significantly impact the stability of the core-shell composite. More interestingly, the virus particle underneath the MOF shell can be chemically modified using a standard bioconjugation reaction, showing mass transportation within the MOF shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile and Efficient Self-template Synthesis of Core-coronal-shell ZnO@ZIF-8 Nanohybrid Using Ascorbic Acid and its Application for Arsenic Removal

In the present contribution, a facile and efficient protocol for synthesis a nanohybrid structure of core-coronal-shell ZnO@ZIF-8 using ascorbic acid (ZnO@AA/ZIF-8) as a new adsorbent for arsenic removal from water has been represented. For this purpose, the ZnO nanospheres were synthesized by a green and simple method followed by coating with ascorbic acid (AA) to modify their surface to achie...

متن کامل

Core-shell nanoparticles for medical applications: effects of surfactant concentration on the characteristics and magnetic properties of magnetite-silica nanoparticles

Objective(s): The use of cationic surface-active agents (surfactant) in the synthesis of nanoparticles, with formation of micelle, can act as a template for the formation of meso-porous silica. Changes in the concentration of surfactants can affect the structures and properties of the resulting nanoparticles.Materials and Methods: Magnetite nanoparticles were prepared as cores using the c...

متن کامل

Synthesis of porous CdO sheet-like nanostructure based on soft template model and its application in dye pollutants adsorption

In this work, the synthesis of porous structure of cadmium oxide with multilayered sheet-like morphology in nano-meter size using adipic acid as soft template by solvothermal/thermal decomposition process is reported. Chemical analyses exhibited that the formation of porous sheet-like structure is originated from bidentate coordination mode of adipate units to Cd-center. It was found that the c...

متن کامل

Synthesis of porous CdO sheet-like nanostructure based on soft template model and its application in dye pollutants adsorption

In this work, the synthesis of porous structure of cadmium oxide with multilayered sheet-like morphology in nano-meter size using adipic acid as soft template by solvothermal/thermal decomposition process is reported. Chemical analyses exhibited that the formation of porous sheet-like structure is originated from bidentate coordination mode of adipate units to Cd-center. It was found that the c...

متن کامل

Facile Synthesis of Quasi-One-Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen-Reduction Reaction.

An intermediate-template-directed method has been developed for the synthesis of quasi-one-dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core-shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction interme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 55 36  شماره 

صفحات  -

تاریخ انتشار 2016